
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 304 (2007) 1–17

www.elsevier.com/locate/jsvi
Viscous oscillations in a circular cylindrical tank with
elastic surface cover

H.F. Bauera, M. Chibab,�

aInstitut für Raumfahrttechnik, Universität der Bundeswehr München, 85577 Neubiberg, Germany
bDepartment of Aerospace Engineering, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho,

Naka-ku, Sakai 599-8531, Japan

Received 8 November 2004; received in revised form 26 July 2006; accepted 15 January 2007
Abstract

In order to shift the frequencies of a liquid with a free surface away from dangerous system frequencies, the surface of

the liquid may be covered with a flexible membrane or a thin elastic plate. The magnitude of such a frequency shift depends

on the parameters of the liquid and those of the structural system and should be known for the design of an aerospace

vehicle. For that reason, we treat a rigid circular cylindrical large aspect ratio container filled with incompressible and

viscous liquid, being covered by an elastic structure. The coupled frequencies and the decay magnitudes are determined for

the lower vibration modes. The fact that we deal with a large aspect ratio tank, where the liquid close to the bottom of the

container exhibits only small velocities, suggests that the adhesive bottom conditions may be deleted, while those at the side

wall of the container are mainly contributing to the damping and are for that reason considered in the analysis. We

determine the complex frequencies of the hydroelastic system. The results show that the coupled frequencies increase with

increasing liquid height ratio and reach soon a nearly constant value, which is being reached much earlier for higher modes.

The decay magnitude also reaches quickly a constant value. Higher modes are damped out fast. In addition, it was found

that the coupled oscillation frequencies are always larger than those of the frictionless liquid, and that the difference

between them decrease considerably with increasing mode numbers.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In modern technology, there is a predominant trend for thin and light structures, leading to high flexibility
of such systems. This is the case for large-capacity liquid containers, propellant storage tanks or for containers
in airplanes, missiles, space vehicles, satellites or space stations. In aerospace vehicles, we find often strong
interactions of propellants with the elastic structure and mainly with the control system. Especially containers
of large diameters exhibit low natural frequencies proportional to the reciprocal square root of the diameter,
and more dangerously, very large sloshing masses, being proportional to the third power of the diameter.
These interactions usually endanger the integrity of the system and may finally destroy the success of the
mission. In such cases, the shifting of those frequencies which lead to instability, is usually the only way to
ee front matter r 2007 Elsevier Ltd. All rights reserved.

v.2007.01.045

ing author. Tel./fax: +81 72 254 9235.

ess: chiba@aero.osakafu-u.ac.jp (M. Chiba).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.01.045
mailto:chiba@aero.osakafu-u.ac.jp


ARTICLE IN PRESS

Nomenclature

A, B, C, D coefficients in Eq. (15)
Amn, Bmn, Cmn, Dmn coefficients in Eqs. (17)–(20)
A�mn �Amna2/n
a radius of tank
D̄ flexural rigidity of plate
E Young’s modulus of plate
g gravitational acceleration g� :� ga3=n2

h liquid height
Im modified Bessel function of order m

i imaginary unit
Jm Bessel function of the first kind of

order m

k constant in Eqs. (7)–(10) K :� ka

Kmn(S) roots of transcendental Eq. (23)
K̄ distributed stiffness of torsional spring

(moment/unit length) for elastically
supported boundary condition

M number of division
m number of nodal diameter
Mr moment
n number of nodal circle
p liquid pressure
po static liquid pressure

r, j, z coordinate system
S � sa2=n ¼ d� io
s characteristic index � s̄� iō
T tension of membrane
T*

�Ta/rn2 membrane tension parameter
t time
u, v, w velocity components of liquid
Vr shear force
b2 � a2ð ¯̄ms2 þ rgÞ=T ¼ ðm�S2 þ g�Þ=T�

bmn, gmn parameters in Eqs. (24) and (25)
d̄ plate thickness
s tension of liquid surface
Z̄ dynamic viscosity of liquid
¯̄m mass/unit area of membrane or plate
m� � ¯̄m=ra

n � Z̄=r
n̄ Poisson’s ratio of plate
x, Z, z̄ displacement components of mem-

brane or plate
z̄mn1, z̄mn2 coefficients in Eq. (29)
r density of liquid
f, c functions defined by Eq. (5a)
o Im S ¼ ōa2=n
d Re S ¼ s̄a2=n
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remedy such disturbing and dangerous problems. Such a procedure may, in some cases, be achieved effectively
by covering the free liquid surface with a flexible structural member, such as a membrane or a thin elastic plate
of various possible boundary conditions. With such a covering the coupled structural member’s frequencies
are shifted away from those of the dangerous one of the original system. It is, of course, mandatory to know
the magnitude of these hydroelastic frequencies and assure the designer that they are separated to a great
extent from and above the control frequency [1,2]. In Ref. [2] a ‘‘sliding-friction’’-edge condition has been
considered, treating a non-viscous liquid with a sloshing free liquid surface in such a way, that the edge
condition could be changed with the ‘‘sliding-friction’’ coefficient. The limit case k-N represents the edge-
surface line at the container wall as a slipping line, while the magnitude of k being zero describes this line as an
anchored edge, i.e. fixed or stuck edge line. This yields larger natural frequencies for the sloshing modes and
would be more adequate to the comparison of a sloshing liquid to that of the liquid-membrane motion at
hand, since the membrane edge is also fixed.

In recent years, some of the early research activities in the hydroelastic area, where a lot of experiments and
analyses [3–24] have been performed for cylindrical containers partially filled with frictionless liquid,
emphasized the importance of such hydroelastic investigations. Some of them treated the interaction with the
elastic cylinder wall [3–7,11–17,19], while others investigated the effect of an elastic tank bottom on the
sloshing of the frictionless liquid. Similar treatments have also been performed on rectangular container
[25–27], and for a cylindrical container with partial cover [28]. If the free liquid surface is completely covered
by an elastic structure, the natural frequencies of the liquid-structure system shall yield the desired increase of
the magnitude of the frequencies [18,25]. This increase depends mainly upon the tension or stiffness of the
elastic coverage. In all these investigations, the liquid has been assumed to be incompressible and frictionless.
Recently, the coupled frequencies of a liquid in a circular cylindrical container with an elastic cover and filled
with non-viscous liquid has been determined by Bauer [25]. For a viscous liquid no results have been known
until recently. Bauer and Chiba [29] have determined the damped coupled frequencies for a viscous liquid in a
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tank of small liquid height ratio, i.e. a shallow container. In this treatment, adhesive conditions were satisfied
at the container bottom and the elastic cover, while at the small side wall area only the normal velocity
condition has been observed. This seems to be justified for shallow containers, in which nearly all the liquid
participates in sloshing. The analytical treatment yields approximate complex frequencies, of which the real
parts describe the damping decay, while the imaginary parts represent the oscillation frequencies. The
procedure is based on the fact that in a shallow tank, say at least h/ao0.5, the friction at the side wall may be
neglected in comparison with that on the combined magnitude of that of the tank bottom and top. The top
and bottom area of the liquid is 2pa2, while the side wall area is 2pah. The smaller h, the smaller the
contribution of the side wall to the damping—justifying the neglection of the adhesive conditions there—since
the area ratio is h/a. This is only a rough estimate. In Ref. [29], we have investigated the liquid-structure
behavior only for values h/ao0.5. This was performed in order to find the motion behavior in that region,
resulting in—as for a viscous liquid with a free liquid surface—a range h/a for which only aperiodic motion is
possible, indicating vanishing oscillation frequency and very large decay magnitude. For very small aspect
ratio h/a, the damping contribution from the membrane and the container bottom is very large, thus reducing
the oscillation frequency of the coupled system to very small values and increasing the decay magnitude of the
membrane-liquid system to large values. At a certain small h/a-value the oscillation frequency even vanishes
and the system exhibits only aperiodic motion. With increasing aspect ratio h/a, the influence of the container
bottom decreases and diminishes as the ‘‘sloshing plug’’-height is reached. With further growth of the liquid-
height ratio h/a, we shall approach the oscillation frequency of the large aspect ratio tank. Both solutions,
i.e. the one of [29] and that presented here, are approximations to an exact solution which is not yet available.
For that reason—and especially for the assumed analytical structure of these two cases the results cannot
coincide and cannot exhibit at a certain h/a-value complete agreement. This was also detected in Refs. [30,31]
where the oscillation frequencies of both cases differ from each other. The decay magnitude of the case with
wall friction is in the oscillatory range always larger than that of the case where the friction of the tank bottom
and an anchored free surface-edge line was considered. We must emphasize that for these reasons we cannot
expect a complete agreement in the transition zone from shallow to large aspect ratio containers.

It was found that viscosity decreases the oscillation frequencies in comparison to the coupled hydroelastic
frequencies of the frictionless liquid and that a new phenomenon appears exhibiting for certain small liquid
heights h/a only aperiodic motion. With increasing angular and radial mode numbers, these aperiodic ranges
decrease. In addition, it was found that higher modes exhibit larger damping. An increase of the membrane
tension decreases the aperiodic region, while an increase in the mass of the membrane increases it.

The results for a shallow container system show that increasing modes exhibit decreasing aperiodic ranges,
being true for both mode numbers m and n, and that decreasing liquid height ratio h/a increases the decay
magnitude and decreases the oscillation frequency. Higher modes show stronger damping, and disappear fast
as time goes on. The increase of the gravity parameter g� � ga3=n2 increases the aperiodic region, of which the
increase is more pronounced for lower modes [29].

In what follows, an investigation of the coupled frequencies of the hydroelastic system consisting of a rigid
circular tank of large aspect ratio h/a, filled with incompressible viscous liquid, the liquid surface of which is
covered by an elastic element (membrane or thin plate). The lower portion of the liquid does not participate
much in the motion of the liquid and behaves nearly like rigid body. This indicates that the velocity
distribution at the bottom is quite small and assumes only very small values in radial- and angular direction.
For that reason, it is considered vanishing in the following approximation theory. The large magnitude of the
side wall velocities requires, however, to satisfy all boundary conditions there, yielding a much more involved
complexity of the analysis.

2. Basic equations and solution

A circular cylindrical tank of diameter 2a (Fig. 1) is filled to a height h4a with an incompressible and
viscous liquid of density r and dynamic viscosity Z̄. The container side wall r ¼ a and the bottom of the tank
z ¼ �h are rigid, while the free surface at z ¼ 0 is totally covered with a flexible membrane or an elastic plate.
The plate may exhibit various attachments to the cylinder wall. It may be clamped, simply-supported, free,
guided or it may be elastically supported. Assuming small displacements and velocities such that the motion of
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Fig. 1. Cylindrical container with an elastic cover filled with viscous liquid.
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the liquid-structure system satisfies the Stokes equations
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and the continuity equation
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where n ¼ Z̄=r is the kinematic viscosity, ~u ¼ u~er þ v~ej þ w~k is the velocity and p the liquid pressure. These
equations have to be solved simultaneously with the equation of the elastic cover, which in case of a flexible
membrane is

T
q2z̄
qr2
þ

1

r

qz̄
qr
þ

1

r2
q2z̄
qj2

� �
¼ ¯̄m

q2z̄
qt2
� p� 2Z̄

qw

qz

� �
z¼0

, (3a)

or in case of an elastic plate
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and the appropriate boundary conditions. In these equations, T is the tension of the membrane, z̄ðr;j; tÞ its
deflection in z-direction, ¯̄m the mass per unit area, D̄ ¼ Ed̄

3
=12ð1� n̄2Þ the flexural rigidity of the plate of

thickness d̄, n̄ Poisson’s ratio and E is Young’s modulus of elasticity. The pressure distribution is given by

pðr;j; z; tÞ ¼ po � rgzþ p̄ðr;j; z; tÞ.

Actually, the plate exhibits displacement x, Z and z̄ in radial-, circumferential- and axial (normal) directions.
This would require the coupled equations in x, Z, and z̄ and in addition the compatibility conditions

qx
qt
¼ u;

qZ
qt
¼ u and

qz̄
qt
¼ w; at z ¼ 0.
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Assuming, however, the radial- and circumferential deflections are small in comparison with the normal
deflection z̄ðr;j; tÞ results in the boundary conditions at the cover:

u ¼ u ¼ 0 and
qz̄
qt
¼ w; at z ¼ 0. (4)

We assume u, u, w and p̄ are proportional to eimjest (m integer, i.e. u ¼ est
P1

m¼0Umðr; zÞeimj, etc.), where
s ¼ s̄þ iō is the complex frequency (coupled frequency of liquid and structure) to be determined. Then the
Stokes equations (1) yield with

f ¼ Um þ iV m and c ¼ Um � iVm, (5a)
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Satisfying the normal boundary condition at the container bottom z ¼ �h with
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The application of the vector operation ‘‘divergence’’ to the Stokes equations yields the Laplace equation
for the pressure distribution, i.e.

Dp̄ ¼ 0, (12)

with the solution

p̄ðr;j; z; tÞ ¼
X1
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This renders for the right-hand sides of Eqs. (11a)–(11c), the expressions �ðk=Z̄ÞD̄mJmþ1ðkrÞ,
ðk=Z̄ÞD̄mJm�1ðkrÞ and ðk=Z̄ÞD̄mJmðkrÞ, respectively, while the continuity equation yields
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The solution of the Eqs. (11a)–(11c) are given with K � ka and S � sa2=n by
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C�ðrÞ ¼ BJm�1
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From the continuity equation (14), we obtain
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With these results, the velocity- and pressure distribution may be expressed as ðD̄mðZ̄=aÞ � DmÞ
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The boundary conditions that have to be satisfied are the side wall conditions (adhesive)

u ¼ v ¼ w ¼ 0; at r ¼ a, (21)

the tank bottom conditions

u ¼ v ¼ w ¼ 0; at z ¼ �h, (22)

of which only the normal condition w ¼ 0 at z ¼ �h is already satisfied. The adhesive conditions u ¼ v ¼ 0 at
the container bottom cannot be satisfied and are omitted for the above reason. They are, however, of minor
influence if the liquid height ratio h/a is large (say h/a41), since the lower part of the liquid is acting nearly as
a rigid body [32,33].

In addition to these boundary conditions at the rigid walls, we have to satisfy the condition at z ¼ 0, the
elastic cover condition (3) and the compatibility conditions (4). The boundary conditions (21) determine the
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magnitude Kmn(S) and yield for its determination the determinant
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For a fixed given angular mode m, the values Kmn(S) must be obtained. From Eq. (21), we also obtain the
magnitude of Bmn and Dmn as
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These equations are still functions of r/a and have to be satisfied at a finite number of points r/a ¼ l/M,
where l ¼ (0), 1, 2,y, (M�1) (for 0pr/ao1), i.e. we will employ the so-called collocation method. There are,
however, the surface cover equations that have to be treated.

2.1. Membrane cover

If the liquid surface is covered by a flexible membrane, we have to solve Eq. (3a) with the boundary
condition

z̄ ¼ 0; at r ¼ a. (28)

This means with Eq. (4) ðqz̄=qt ¼ wÞ and
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as well as Eq. (3a) that the equation
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Z̄

Ta

X1
n¼1

Amnð1þ bmnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q
Jm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q
r

a

� �
cosh Kmn

h

a

� �
,

ð30Þ
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where b2 � a2ð ¯̄ms2 þ rgÞ=T , has to be solved. The solution of the above inhomogeneous differential equation
yields the expression

z̄mðrÞ ¼ AomIm b
r

a

� �
�

Z̄a

T

X1
n¼1

Amngmn

S þ 2K2
mn

� 
cosh Kmnðh=aÞ

� 
K2

mn þ b2
�  Jm Kmn

r

a

� �

þ
Z̄a

T

X1
n¼1

Amn 1þ bmn

� 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q
cosh Kmnðh=aÞ

� 
K2

mn � S þ b2
�  Jm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q
r

a

� �
. ð31Þ

Introducing Amna2=n ¼ A�mn and Ta=ðrn2Þ � T�, we obtain

z̄mðrÞ ¼ AomIm b
r

a

� �
�

1

T�

X1
n¼1

A�mngmn

S þ 2K2
mn

� 
cosh Kmnðh=aÞ

� 
K2

mn þ b2
�  Jm Kmn

r

a

� �

þ
1

T�

X1
n¼1

A�mn 1þ bmn

� 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q
cosh Kmnðh=aÞ

� 
K2

mn � S þ b2
�  Jm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q
r

a

� �
. ð32Þ

Since the membrane is clamped at r ¼ a, it is

z̄mðaÞ ¼ AomIm bð Þ þ
1

T�

X1
n¼1

A�mn 1þ bmn

� 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q
K2

mn � S þ b2
�  Jm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q� �
�

gmn S þ 2K2
mn

� 
K2

mn þ b2
�  Jm Kmnð Þ

8<
:

9=
;

� cosh Kmn

h

a

� �
¼ 0. ð33Þ

With the compatibility condition (4), i.e. qz̄=qt ¼ w at z ¼ 0, we obtain

B̄mn1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q
2SKmn

A�mn 1þ bmn

� 
sinh Kmn

h

a

� �
,

and

B̄mn2 ¼
Kmn

S
gmnA�mn sinh Kmn

h

a

� �
.

It is therefore by comparison of the results with Eq. (32)

AomIm b
r

a

� �
þ

1

T�

X1
n¼1

A�mn 1þ bmn

� 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q
K2

mn � S þ b2
�  Jm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q
r

a

� �
�

gmn S þ 2K2
mn

� 
K2

mn þ b2
�  Jm Kmn

r

a

� �8<
:

9=
;

� cosh Kmn

h

a

� �
þ
X1
n¼1

A�mn 1þ bmn

� 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q
2SKmn

Jm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q
r

a

� �
�

Kmn

S
gmnJm Kmn

r

a

� �8<
:

9=
;

� sinh Kmn
h

a

� �
¼ 0. ð34Þ

We shall satisfy the Eqs. (26), (27) and (34), which are equations in A�mn at M points r/a ¼ l/M,

l ¼ 0, 1, 2,y, (M�1). This yields

X3M

n¼1

A�mn Jmþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q l
M

� �
� bmnJm�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q l
M

� �
þ 2KmngmnJ 0m Kmn

l
M

� �	 


� cosh Kmn

h

a

� �
¼ 0, ð35Þ
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for l ¼ (0), 1, 2,y, (M�1),

X3M

n¼1

A�mn Jmþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q l
M

� �
þ bmnJm�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q l
M

� �
�

2mgmn

l=M
Jm Kmn

l
M

� �	 


� cosh Kmn

h

a

� �
¼ 0, ð36Þ

for l ¼ 1, 2,y, (M�1). In addition, Eq. (34) results in

AomIm b
l

M

� �
þ
X3M

n¼1

A�mn

1þ bmn

�  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q
T� K2

mn � S þ b2
�  Jm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q l
M

� �
�

gmn S þ 2K2
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� 
T� K2

mn þ b2
�  Jm Kmn

l
M

� �8<
:

9=
;

� cosh Kmn

h

a

� �
þ
X3M

n¼1

A�mn 1þ bmn

� 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q
2SKmn

Jm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

mn � S

q l
M

� �
�

Kmn

S
gmnJm Kmn

l
M

� �8<
:

9=
;

� sinh Kmn

h

a

� �
¼ 0, ð37Þ

for l ¼ 1, 2,y,M, in which A0m is obtained from Eq. (33). These are fully 3M�2 (or 3M�1) homogeneous
algebraic equations in A�mn (m fixed, n ¼ 1, 2,y, 3M�2 (or 3M�1)), of which the vanishing of the coefficient
determinant represents the natural damped frequency equation for the determination of the approximate
lower coupled complex natural frequencies. It may be noticed that these equations have to be solved together
with the values Kmn(S) from Eq. (23).

2.2. Plate cases

Plate cases may be treated in a similar way under the following boundary conditions, but are omitted here.
(a)
 clamped:

z ¼ 0 and
qz
qr
¼ 0; at r ¼ a, (38)
(b)
 simply supported:

z ¼ 0; Mr ¼ �D̄
q2z
qr2
þ n̄

1

r

qz
qr
þ

1

r2
q2z
qj2

� �� �
¼ 0; at r ¼ a, (39)
(c)
 free:

Mr ¼ 0 and V r ¼ �D̄
q
qr

q2z
qr2
þ

1

r

qz
qr
þ

1

r2
q2z
qj2

	 

�

D̄

r
1� n̄ð Þ

q
qr

1

r

q2z
qj2

� �
¼ 0; at r ¼ a, (40)
(d)
 guided:

qz
qr
¼ 0 and V r ¼ 0; at r ¼ a, (41)
(e)
 elastically supported:

Mr ¼ K̄
qz
qr

and V r ¼ 0; at r ¼ a, (42)
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where n̄ and D̄ are Poisson’s ratio and flexural rigidity of the plate, respectively. The edge rotation is opposed
by torsional springs having a distributed stiffness K̄ (moment per unit length).
3. Numerical evaluations

Some of the above-obtained analytical results have been evaluated numerically and are presented here. The
numerical evaluations have been restricted to a membrane cover (Fig. 1) for asymmetric motions, since this
motion exhibits the lowest and most dangerous natural liquid frequency, which should be increased by an
additional membrane cover. This shall yield a larger frequency and move it above and away from the control
frequency. For a cover consisting of a flexible membrane, the characteristic parameters are the tension
parameter T� � Ta=rn2, the gravitational parameter g� � ga3=n2, the density ratio m� � ¯̄m=ra, the liquid
height ratio h/a and the vibration modes (m, n), where m is the number of nodal diameters and n is the number
of nodal circles (see Fig. 2). In the numerical computations, the number of unknown constants Amn was taken
to be 20. This yields reliable engineering data for the lower modes. The given results are especially of
importance for large liquid height ratios h/a, for which the liquid in the lower part of the container behaves
like a rigid body. For such liquid fillings, the motion of the liquid takes place immediately below the
membrane, penetrating with its motion only to a depth of about one wave length. For this reason, the
contribution to damping and frequency of the lower part of the liquid immediately above the tank bottom is of
minor and negligible effect.

In previous investigations [32–34] of viscous liquid motion with free surface in a rigid cylindrical container,
an important fact was detected. The results show that, for small liquid heights h/a, the liquid motion exhibits
only an aperiodic motion, if disturbed. The decrease of the liquid surface tension s� � sa=rn2, i.e. increase of
viscosity n, increases the region of aperiodicity and decreases the decay magnitude and oscillation frequency
for h/a values above the aperiodic range. In addition, the aperiodic range decreases with increase of the
gravitational parameter g� � ga3=n2. In the oscillation region, the frequency increases and the decay exhibits
larger magnitude.

In the present numerical evaluations, the tension parameter was chosen to be T� ¼ 1000, while the
gravitational parameter g� ¼ 10 000 and the mass parameter m� ¼ 0:01.

In the following figures, we represent for these parameters the coupled frequency o � ōa2=n ¼ ImðSÞ and
d ¼ s̄a2=n ¼ ReðSÞ, both as functions of the liquid height ratio 0.8ph/ap2.0. The results are again compared
with previous results of the frictionless case and the viscous case for shallow liquid height, in which only the
normal side wall condition has been satisfied, but all the bottom conditions (adhesive boundary conditions)
have been observed [29].

In Fig. 3, we represent for T� ¼ 1000, g� ¼ 10 000, m� ¼ 0:01 for the mode m ¼ 1, n ¼ 1, the results of the
oscillation frequency o and the decay magnitude d of the motion. It may be mentioned that these results are
valid for the here treated case of about 0.5ph/ap1.0. The oscillation frequency ù increases with increasing h/a

and reaches soon a magnitude of about o ¼ 201, while the decay magnitude d approaches a value of about
m=1   m=2 m=3

Fig. 2. Vibration modes of covered surface; m ¼ 1, 2, 3.
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Fig. 3. Coupled complex frequency of asymmetric motion m ¼ 1, n ¼ 1; T� ¼ 103, g� ¼ 104 and m� ¼ 10�2; , inviscid.
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d ¼ �4.7. In comparison, the dashed line represents the result for the coupled frequency of the lowest
asymmetric mode m ¼ n ¼ 1 for frictionless liquid, which also increases with increasing liquid height ratio, but
assumes a much lower oscillation frequency. It should be mentioned here, that the shown mode m ¼ 1, n ¼ 1
represents the dynamically most important mode, since it exhibits the largest sloshing mass participating in the
motion of the liquid-structure system and the lowest frequency of the system. Higher modes, i.e.
(m, n) ¼ (1, 2), (1, 3), (2, 1), (2, 2), (2, 3) or (m, n) ¼ (3, 1), (3, 2), (3, 3), etc. exhibit rapidly decreasing
participating slosh masses and higher frequencies, and may actually be neglected. They also will exhibit much
larger decay magnitudes, expressing a rapid decay of the motion. As time goes on they will disappear in the
liquid motion. Increasing the tension parameter T� yields increasing oscillation frequencies ù and also
increased decay magnitude |d|. This means that large tension parameters will make the oscillations disappear
much faster (not shown). The liquid in the shallow container shows in the mode m ¼ n ¼ 1 only aperiodic
motion, i.e. ReSa0. The decay magnitude is very large, is as shown in Ref. [29] (Fig. 10) beyond the treated
0oh/ao0.5 range and cannot be presented in this Fig. 3. Due to the largest slosh mass (‘‘slosh-plug’’), the
here treated case may only be valid for 0.8oh/a. In Fig. 4, we present the results of the mode m ¼ 1, n ¼ 2 and
notice, for a much larger oscillation frequency and much larger decay magnitude, the same behavior as in the
previous mode. The oscillation frequency is about 3 1

2
times as large, while the decay |d| assumes a magnitude

of about 4 1
2
times that of the mode m ¼ n ¼ 1. Fig. 5 shows oscillation frequency and decay magnitude for the

mode m ¼ 2, n ¼ 1. In this case, the membrane exhibits two nodal lines, as may be seen in Fig. 2. The
oscillation frequency reaches soon a value of o ¼ 298 and the decay magnitude d ¼ �13.5, while the inviscid
case exhibits an oscillation frequency of about ù ¼ 239. We notice that the difference of the oscillation
frequency ù for viscous liquid and that of inviscid liquid decreases as the angular modal number m assumes
larger values. The validity of the coupled viscous results has been, due to the reduced sloshing mass, i.e. a
lesser depth at which the ‘‘slosh-plug’’ below the membrane appears, increased. We assume that the presented
results are valid in the range 0.5ph/ap2.0 (Fig. 5).
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Fig. 4. Coupled complex frequency of asymmetric motion m ¼ 1, n ¼ 2; T� ¼ 103, g� ¼ 104 and m� ¼ 10�2; , inviscid,

and , viscous [29].
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Fig. 5. Coupled complex frequency for asymmetric motion m ¼ 2, n ¼ 1; T� ¼ 103, g� ¼ 104 and m� ¼ 10�2; , inviscid.
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From Fig. 10 of Ref. [29] we notice again that for T� ¼ 103 the system represents an aperiodic motion if
disturbed in that mode m ¼ 2, n ¼ 1. The value ReSa0 cannot be given here, since Ref. [29] does
not show the actual value. Similar results are shown for the third mode m ¼ 3, n ¼ 1 in Fig. 6. The results for
viscous liquid reaches for liquid height ratios larger h/a40.5 a nearly constant magnitude of o ¼ 422, while
the decay magnitude exhibits in this area a value of about d ¼ �43.5. This is, because the upper liquid
participates from a certain liquid height on totally in the sloshing motion, and penetrates with increasing
mode number less deep below the membrane into the liquid. The liquid motion exhibits three nodal
lines (see Fig. 2) and shows that the oscillation frequency of the frictionless coupled frequency is much closer
below the viscous case. For the mode m ¼ 3, n ¼ 1, the range of validity for the coupled viscous liquid-
membrane results may, due to the very small slosh-plug mass immediately below the membrane, be further
extended to about 0.3ph/ap2.0. From Fig. 10 of Ref. [29], we find that the system for a shallow container
yields for 0ph/ap0.16 only the possibility of aperiodic motion. This is indicated by the thin blue line,
reaching at |d|E200 a bifurcation point at h/a ¼ 0.16. Comparing the four, Figs. 3–6, we notice that for
m ¼ 1, 2, 3 and n ¼ 1 the damping is significantly increasing with increasing mode number, i.e. from |d| ¼ 4.7
for m ¼ 1 to 43.5 for m ¼ 3. This indicates that higher modes are due to their fast disappearance of
minor importance. In addition, we detect that the oscillation frequency of the frictionless cases are quite
different from those of the viscous cases, and that the difference of frictionless frequency and viscous
oscillation frequency reduces as the mode number increases. This indicates that for higher modes the
natural frequency is lower, but close to the oscillation frequency of the viscous case (see Table 1). This suggests
that for higher modes, the frictionless treatment of the hydroelastic problem may yield good approximate
results.

For higher modes, we noticed that the number of Amn needs to be increased to obtain better results.
This, however, has been omitted here, since we are mainly concerned with the lower modes for
reasons of controlling the stability and response of a space vehicle. The axisymmetric case is presented in
Ref. [35].
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Fig. 6. Coupled complex frequency for asymmetric motion m ¼ 3, n ¼ 1; T� ¼ 103, g� ¼ 104 and m� ¼ 10�2; , inviscid,

and , viscous [29].
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Table 1

Coupled oscillation frequencies and decay magnitudes at h/a ¼ 2.0

m Sm1 Sm2

Frictionless Viscous Frictionless Viscous

1 112i �4.7+201i 424 �44.9+698i

2 239i �13.5+298i — —

3 389i �43.5+422i — —

H.F. Bauer, M. Chiba / Journal of Sound and Vibration 304 (2007) 1–1714
4. Conclusion

From the above results, we may conclude some basic behavior of the liquid-structure system, using a
membrane as a covering element of the free liquid surface for large aspect ratio systems.
1.
 With increasing liquid height ratio h/a, the coupled frequencies increase and reach soon a nearly constant
value. This increase is stronger for higher modes (both angular and radial) where the frequency reaches a
nearly constant magnitude at lower h/a values.
2.
 The decay magnitude decreases slightly with increasing liquid height ratio h/a and reaches soon nearly
constant magnitude. For higher modes, a constant but larger magnitude is achieved at lower liquid height
ratios. It also means that higher modes are damped out fast.
3.
 The coupled oscillation frequencies are always larger than those of a system of frictionless liquid, the
differences of which become smaller with increasing mode numbers.
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Appendix A

In the frictionless analysis [25], we employed the boundary conditions as, u ¼ qf=qr ¼ 0 at r ¼ a (at the

wall), _̄z ¼ w ¼ qf=qz at z ¼ 0 (at the liquid-membrane interface), and w ¼ qf=qz ¼ 0 at z ¼ �h (at the
bottom). The validity of this solution, as has been mentioned already above, is only guaranteed for small h/a
values, i.e. shallow containers. As h/a decreases in the shallow region (h/ao0.5), the oscillation frequency
decreases considerably, while the decay magnitude |d| increases rapidly. The lower the liquid height ratio h/a
becomes, the more of the total liquid volume (‘‘slosh-plug’’) (Fig. A1) participates in the liquid motion, thus
increasing the decay magnitude even more. At a certain height h/a, the liquid-structure system ceases to
oscillate and is just performing an aperiodic motion, if disturbed. This motion persists with decreasing liquid
height ratio h/a and exhibits increasing decay magnitude dj j. We may notice [29] that with increasing angular
mode m and increasing radial mode n the aperiodic range is decreasing. In addition we may remark that the
oscillation frequency reaches at h/a ¼ 0.5 a certain magnitude which for larger h/a-values still would increase
slowly. This region, however, has not been investigated in Ref. [29]. The analytical approaches of shallow and
large aspect ratio containers cannot, due to the different analytical procedures yield an acceptable transition
region h/a. For the here treated case we may notice that with increasing liquid height ratio h/a, the coupled
frequency increases, reaching soon a magnitude, for which only very little change occurs, as h/a increases
beyond the region h/a ¼ 0.5. The same is true for the decay behavior. For frictionless liquid, the frequency
increases strongly for growing at small h/a-values and reaches also soon a value of nearly constant magnitude.
Its magnitude is below that of the viscous liquid, as indicated by the dashed line (see Ref. [29]).
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Fig. A1. ‘‘Slosh-plug’’ for various container bottom locations and modes: (a) m ¼ n ¼ 1 mode, and (b) m ¼ 3, n ¼ 1

mode.
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For a shallow container we notice: The strong damping as contributed from the top and bottom of the
container reduces the oscillation frequency considerably, yielding for small aspect ratios even vanishing
oscillation frequency and exhibits only an aperiodic motion of the liquid-membrane system. With increasing
small h/a-values, the contribution of the bottom of the container to damping decreases due to the
smaller velocity distribution in the growing ‘‘slosh-plug’’. It shall not suppress the growth of the oscillation
frequency as much as that of a smaller (shallower) aspect ratio tank. With increasing location h/a of the
container bottom, the liquid motion near the tank bottom becomes weaker, thus contributing less damping to
the total liquid-structure system. If the bottom of the tank is located in the ‘‘slosh-plug’’, then it will
contribute—due to larger velocity distribution—more damping to the system, thus reducing the oscillation
frequency (see Fig. A1).
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